

2003 RIVERS AND WATERSHED CONFERENCE

- Introduction
- · Protocols
- Progress Report of Current Efforts
- Summary

Concept of Biocriteria

- Similar to establishing water quality standards
- Designed to establish "cutoffs" for acceptable and unacceptable ecological community status
- "Status" includes composition, abundance, diversity, structure of fish and macroinvertebrates
- Allows for comprehensive means of assessing and reporting water quality by integrating impacts caused by multiple physical/chemical parameters
- Includes surveys of multiple assemblages (i.e. fish & bugs)

Current State level Volunteer Water Quality Monitoring Opportunities

Volunteer Lake Assessment Program (VLAP) Volunteer River Assessment Program (VRAP)

(V

- Standardized Data Collection Protocols
- Mostly based on physical / chemical parameters
- Data used in State Assessments

Forthcoming State level Volunteer Water Quality Monitoring Opportunities

Volunteer Biomonitoring Assessment Program (VBLAP)

Created to fulfill gap in biological data collection in a standardized manner.

Goals:

- •To supplement biological data collected by NHDES staff as a rapid "screening" level technique" (i.e. assessments at "gross" level)
- •To educate the public about water quality issues as interpreted through biological assessments.
- •To build a constituency of citizens to practice sound water quality management at a local level and build public support for water quality protection.

2003 RIVERS AND WATERSHED CONFERENCE

- Introduction
- Protocols
- · Progress Report of Current Efforts
- Summary

Protocol Development

Need to be a Realistic Balance of the following:

Staff Resources

- Train Volunteers
- Validate Protocols
- •Determine Data Usage

Data Usage

- Screening tool
- •State Assessments
- •Trend Monitoring

Volunteer Abilities

- •Attend Training Workshops
- •Bug Identification
- •Bug Sorting
- •Complete Sampling with limited Equipment

Protocol Development

Two Major Concerns in Developing the Protocols

- 1. Identification level: Primarily Order (K, P, C, O, F, G, S)
 - · Since we wanted to be able to make multiple assessments in one day, • Field ID to lower than **Order** (with few exceptions) is not possible without a

2. Identification procedure: Streamside, Quantitative 100 organism sub-sample

- ·Streamside vs. Laboratory
- •\$ for microscopes •Increased Staff Time:
- Training to Family ID
 Oversight in laboratory
- Qualitative vs. Quantitative
 - *Decided against relative abundances (rare, common, abundant) & decided on actual counts.
- •Why? To obtain higher quality data.
 •Is it possible to do actual counts Streamside? Hmmm... It is tough,
- which is why we have modified protocols (as seen later person hours)

Protocol Details: Bug collection

Perform 5 1-minute Kicknets over 200' reach to collect bugs

Protocol Details: Identify & Enumerate						
Ephemeroptera Mayfly Nymph						
	Plecoptera	Stonefly Nymph				
•Goal is to identify	Trichoptera	Net-Spinning Caddisfly Larvae Casebuilder/Freeliving Caddisfly Larvae				
at least 100 bugs	Odonata	Dragonfly Nymph Damselfly Nymph				
•Pictorial and dichotomous ID keys were provided	Diptera	Black fly larvae Midge larvae Most True Flies				
•All bugs are returned to the	Megaloptera	Alderfly Fishfly or Helgrammite				
stream at completion of sampling	Coleoptera	Riffle Beetle Water Penny Other Beetle Larvae				
	Others	Crayfish Snails Aquatic Worms Scuds Sowbugs Clams				

2003 RIVERS AND WATERSHED CONFERENCE

- · Introduction
- Protocols
- Progress Report of Current Efforts
 - Volunteer Training
 - NHDES testing
- Summary

Volunteer Results Summer 2003

Volunteer Group	Site	Town	# Bugs ID'd	WQ Score
Colby-Sawyer	A - Cold River	Walpole	225	Fairly Poor
	B - Cold River	Alstead	51	Excellent
	C - Cold River	South Acworth	181	Excellent
Cold River (LAC)	A - Cold River	Walpole	392	Good
	B - Cold River	Alstead	189	Good
	C - Cold River	South Acworth	110	Good
	D - Cold River D - Cold River	Acworth	159	Excellent
	(duplicate)	Acworth	164	Excellent
Souhegan Watershed				
Association	Souhegan River	Greenville	146	Good
	Souhegan River	Merrimack	146	Excellent

Volunteer Feedback

Concerns:

- Bug identifications (need for reference collections)
- Time requirement (biggest concern)
- · Data:
 - What is Protocol's Utility?
 - Submittal and Retrieval (i.e. What happens to our data?)

NHDES Testing

- · Why?
 - Because we presented Protocols to Volunteer groups without having used them
 - What Protocol tweaking needed to be made?
 - · Were protocols feasible?
 - · What sort of data would they provide?
- · What did we do?
 - General Protocol Assessment user friendly?
 - Quality Control checks
 - Identification success
 - · Sorting success

NHDES Testing

# sites sampled	10
# bugs ID'd per sample	152-266
# staff per site	2-3
average sampling time	2 hrs
person hours per site	5 hrs
(bug collection, sorting, ID)	
* average QC time per sample	8 hrs
total hours required to complete one site	
field sampling & laboratory QC	12.5

* This laboratory QC effort is not required of the Volunteers

NHDES Testing: Quality Control Checks Purpose: to test Field Sorting & Identification efficiency Field Assessment vs.. Laboratory Assessment

Same Sample. Different Result?

NHDES Testing: Quality Control Checks – Step 1

- In the Field Bugs were Identified without a microscope
- We brought these bugs back to the laboratory for re-Identification

How did we do?

NHDES Testing: Quality Control Checks – Step 2

- In the Field, Bugs were hand picked.
- This pile of goop was then brought back to the laboratory and sorted through under the microscope.
- How many bugs did we miss?

# Bugs found			-	O-dis-Efficience	
Field	+	Laboratory	=	I otal combined	Sorting Efficiency
189	+	415	=	604	31%
152	+	305	=	457	33%
169	+	296	=	465	36%
266	+	342	=	608	44%
226	+	235	=	461	49%
248	+	234	=	482	51%

2003 RIVERS AND WATERSHED CONFERENCE

- Introduction
- Protocols
- Progress Report of Current Efforts
- Summary

Summary: Recap of Test Year

- Generally Positive feedback from volunteer groups
- Protocol provided basic understanding of biological condition (we are not sure whether the #'s can be used to make impairment decisions. This requires further testing)
- Program logistics: equipment provisions/loaning, training sessions, data submittal
- NHDES testing useful in confirming volunteer feedback and sources of error.

Recommend Protocol changes

(Resulting from field use, QC efforts, & Volunteer feedback)

- Reduce sampling effort & specifically time to sort bugs
 - Standardize by "person-hours"
 Aim for >100 organisms in under 2 person-hours, with person-hours taking precedence over # critters
- Clump Caddisfly groups into one category
- Provide or encourage voucher collections to enhance bug identifications

Summer 2004 and beyond

- · Finalize Protocols
- · Maintain current Volunteer Groups (if willing)
- Increase Volunteers (based upon requests)
- Develop & Implement QC plan
 (Allowing for submittal of data to NHDES)
- Complete comparative analysis between VBAP & regular NHDES protocols

Thank you to all Volunteer Participants in the VBAP Pilot Year 2003

Program Manager David Neils N.H. Department of Environmental Services Water Division Biomonitoring Program Concord, NH 03302-0095 dneils@des.state.nh.us (603) 271-8865

